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E F F E C T  O F  T U R B U L E N C E  

ON T H E  T R A N S I T I O N  F O R  

S E L F - S I M I L A R  F L O W S  

Y u .  P .  S a v e l ' e v  

OF  T H E  O U T E R  S T R E A M  

S O M E  C L A S S E S  OF 

UDC 533.011.5 

It is shown that  in the p re sence  of v e r y  low levels  of pulsations at the outer  l imit  of the laminar  
boundary layer  the energy  of neutra l  osci l lat ions within the layer  i t se l f  r eaches  ve ry  high va lues .  
This p r e d e t e r m i n e s  the t r ans i t ion  to  turbulent  flow. 

1 .  P r i m a r y  M o t i o n  a n d  E q u a t i o n  of  t h e  O s c i l l a t i o n s  

For  the study of the s tabi l i ty  of l aminar  flow, as is usual ly done in mechanics  in the theory  of s tabi l i ty ,  
we will examine the p r i m a r y  motion on which the per turbed motion, caused by the p re sence  of d is turbances  
in the fo rm of a degree  of turbulence  E 0 of the outer s t r e a m ,  is supe r imposed .  In the genera l  case  one can 
a s s u m e  that the per turbed  motion affects  the p r i m a r y  motion.  The equations of the plane motion of a viscous 
i ncompres s ib l e  fluid, wr i t t en  through the s t r e a m  function $(x, y, t) ,  have the f o r m  [1] 

(Ar -- O~ 0 (Ar --}- (~  0 (A~p) ---- vAA~p. (I) 
at ox Oy oy ox 

The s t r e a m  function ~ (x, y, t) d e s c r i b e s  the instantaneous s ta te  of the liquid or gas .  We designate the p r i -  
m a r y  motion through ~(x, y), while the s t r e a m  function ~,' (x, y, t) will desc r ibe  the per turbed motion.  Then 
-~ = ~ + ~', where  the s t r e a m  function $' can be de te rmined  f r o m  the equation 

(A~P')t -i- Wu (A~P')x d- r (AV)x - -  Wx (A~?') u - -  ~P'x (AV)u = vAA~I/. (2) 

Considering the motion in the boundary layer ,  by substi tut ing r = �9 + ~' into Eq. (1) and ca r ry ing  out the a v e r -  
aging (in the ergodic  sense)  of the equation obtained we a r r i v e  at the ave rage  equation of the p r i m a r y  motion in 
the f o r m  [2] 

uu~ + ~,u~ + u'~ = + ~-v" = U~Ue~ + ~U~, (3) 

where  
u = ~ ;  v----vx; u'=,~; v'=--~;:. 

The last  two t e r m s  on the  left side of (3) cha rac t e r i ze  the effect  of the per turbed motion on the p r i m a r y  motion. 

Henceforth,  solutions for  s y s t e m  (3) like those  which follow flow of the Folkner  - -  Skan type,  i . e . ,  Ue = 
cx m,  where  the index e per ta ins  to  the outer  nonviscous s t r e a m ,  will be examined as solutions of the equations 
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of the  p r i m a r y  mot ion .  In p lace  of r y) we in t roduce  the  funct ion F(~) such  that  

whe re  

(x, g) = F 01) v [~ (2 - -  [3)1 ~ 

=- : - - - - - "  = ; ~ = - - ;  ~ m + l  U e X V 

(4) 

in  p lace  of r (x, y,  t) we in t roduce  the funct ion F '  (~), d e t e r m i n e d  by the r e l a t i o n *  

, '  (x, g, t) = F'  01) v [~ (2 - -  ~)1~ r  (t). (5) 

Let  us subs t i tu te  (4) and (5) into Eq.  (2), t hen  mult iply  both s ides  of the  equat ion  obtained by ~ ' ( t ) ,  
and a v e r a g e  al l  the t e r m s  of the r e su l t i ng  equa t ion  with r e s p e c t  to  t i m e .  We then  obtain the follovring l inear  

equa t ion :  

a,F'~q,~n + a~F'~n + aeF'~n -+- a,F'~ -+- aoF' = O, (6) 

where  
a o = - -  4k~ (m 2 -  1) + 2~l~F~,, (m--- 1) 2 (m + 1) + 2~F~, (m 2 - -  i) (5m - -  3) + 

1 (m - -  5) ( rn - -  3) (m ~ - -  I); q-6Fn(m--1)(m+ 1)z + 4~Fnnn(tn+ 1)~+ 

a~ = 2~12F~ (3 - -  m) (m - -  1) 2 + 4*lF, (3 - -  m) (m - -  1) (3m - -  1) - -  

~ 1  (m --3) (m - -  1) (t5m* - -  28m + 5) + - -  4qk~ ( 3 m - -  1) (m --. I) + - -  

+ 6F (m + t) (m 2 ~ 1) --- 4~F~, (m § I) (3m ~ 1); 

a2=~ 2 { +  (m 1)2(25rn*--74m+aS)+2F~(3--m)(m--1) 2 -  

- -  4k~ (m - -  1) 2} + 2~F (m 2 - -  1) (Sm - -  3) - -  8k~ ~ (m -'- 1) - -  4~F~ (m + I) ( 3 m - -  1) + 12 (m z - -  1) ( 3 m - -  1); 

a s = 2 - -  (m ~ 1) 3 (5m--  7) -? 2q~F (m - -  i) : ;.. ~- 1) + 4q (m ~ --1) (7m - -  5) + 4~F (m -? 1)z; 

v r  

F o r  convenience  in  the so lu t ion  of the r e su l t i ng  boundary  p rob lem,  in the in t eg ra t ion  of (6) it will  be con-  
venient  to  in t roduce  into the  d i s c u s s i o n  a funct ion f = F ' / F ~ ( 0 )  for  p rob l ems  of the "wake" type and a fune-  

, ' ? 
t i on  f = F / F ~ ( 0 )  for  n e a r - w a l l  p r o b l e m s .  Since ~ / u  e = F ~ / / ~  in the a s s i g n m e n t  of the d e g r e e  of 
u n i f o r m  tu rbu lence  E 0 = u C ~ / U e b } - .  ~ of the outer  s t r e a m  one can  e l imina te  f r o m  c o n s i d e r a t i o n  the inde-  
t e r m i n a t e  value ~ = E0/F~(~)  and obtain 

~ / Y  G :~ V~:'  {: + (8 -1 )  ~:~} G f~ ( 2 -  [3)1 -~ (7) 

Fina l ly ,  if  we in t roduce  the  funct ion ~(x, y) in the f o r m  (4) into Eq. (3) and use (7), t hen  we obtain  Eq. (8), 
and the r e su l t i ng  s y s t e m  of equat ions ,  s e r v i n g  for  the d e t e r m i n a t i o n  of the in tens i ty  of pulsa t ions  in the 
bounda ry  l aye r ,  will  have the f o r m  

G ~ , + F G , + ~ ( 1 - - F ~ ) +  [ E~ ]~(fM+[3f~)=O, (8) 

~I)~ a i dff = 0 .  (9) 
d~ ~ 

*This  f o r m  of r e p r e s e n t a t i o n  of r  y,  t) and the hypo thes i s  of  a t r ans i t i on  s i te  w e r e  f i r s t  pointed out by L. N 
Shchukin (Moscow) in a r e p o r t  at  a s e m i n a r  on the t heo ry  of r e s i s t a n c e  and hea t  t r a n s f e r  lead by P r o f e s s o r  
L P.  Ginzburg,  Len ing rad  State  Un ive r s i t y  (1968). 
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Fig.  1. Law of va r i a t ion  of energy  of pulsat ion 
mot ion in a c r o s s  sec t ion  of the boundary layer  
at a plate with different  local Reynolds numbers  

=UeX/~(4--~ /Ue >> V ~ / U e  when 0 < y < 6): 1) 
~= 0.5"10G; 2) 0.1-10~; 3) 0.2.107; 4) 0.4.10~; 
5) 0.7.10~; 6) 10 ~. 

2 .  A n a l y s i s  o f  E q u a t i o n s  O b t a i n e d  

Equation (8), according  to  the a s sumpt ion  made concerning the nature of the outer s t r e a m  (u e = cxm),  
is s e l f - s i m i l a r  if the function f actual ly  depends only on the s imi l a r i t y  coordinate ~. However,  the coeff i -  
cients of Eq. (9) r e v e a l  a c l ea r  dependence on the longitudinal coord ina te  x ,  s ince they contain the local 
Reynolds number  } = Re x. An analys is  of the coefficients a i shows that  with m = 1 (flow in the vicini ty of 
the s tagnat ion point of the s t r e a m )  these  coefficients  will equal a 0 = 1 6 ~ F ~ ,  a 1 = --16~FT]~, a 2 --- - - 1 6 ~  2 - -  
16~F~, a s = 16EF, and a~ = 16}, r e spec t ive ly .  For  a s teady random p roces s  at the outer l imi t  of the bound- 
a ry  l aye r  the random value @' and its t ime  der iva t ive  r  a r e  independent; consequently,  for  such p ro -  
c e s se s  @'@~ = 0 and ~ = 0, which co r responds  here  t o t h e  concept of neutra l  osc i l la t ions .  I n t h i s  case  Eq. 
(9) is reduced to  the f o r m  

As seen  f rom (10), the equation of the osci l la t ions i s fu l ly  s e l f - s i m i l a r ,  whieh eo r responds  to the a s s u m p -  
t ion  made init ial ly concerning the independence of F '  (or f) f r o m  ~. 

A study of the coeff icients  a i for other types  of flows (m ~ 1) shows that  i n t h e  case  of neutral  osc i l -  
lations (h = O) the i r  values a r e  descr ibed  by the equations 

a.~=4~ {--Fn(m+l)(3m--l)+O(@-)}, 

a 3 ~ 4  ~ { F ( m + l )  ~ + O  ( - - ~ - ) } ,  

t \ g / l  

For  large Reynolds numbers  Re x the t e r m s  in b racke t s  will p rac t ica l ly ,  with a degree  of accu racy  O(1/~), 
not depend explici t ly on } (or x), and a f te r  subst i tut ion of the coefficients a i into Eq. (9) the la t ter  a l so  
p roves  to be s e l f - s i m i l a r .  

3 .  B o u n d a r y  C o n d i t i o n s  

As the boundary conditions imposed on F(~) in the solution of s y s t e m  (8)-(9) for nea r -wal l  p roblems 
one uses  the usual  conditions of a t tachment  to  the wall  at ~ = 0 and the condition of the asymptot ic  e m e r -  
gence of the veloci ty  at a fixed value in the outer  s t r e a m  as ~ - -  ~o; the veloci ty pulsations at the wall  equal 
zero;  at the outer l imit  of the boundary layer  one uses  the following conditions of uniformity of the pulsa-  
t ions and the condition of a fixed degree  of turbulence E0: 

a t e = 0  
F ----- F~, (or 0), F~ = f = r,~ = O, f,~,~ = I, (11) 
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Fig, 2. Law of energy distr ibution of pulsation motion 
in a c ross  sect ion of the wake at the point of division of  
the s t r eam into c i rculat ion and direct  flows in the null 
(a) and f irs t  (b) approximations with different degrees  
of turbulence E 0 of the outer s t r eam.  The shaded region 
corresponds  to values obtained f rom Eqs. (14)-(15) (E 0 = 
u4-~V2/UeJy=5): 1) E 0 = 0.00058; 2) 0.00073; 3) 0.00091; 
4) 0~ 5) 0.00139; 6) 0.00194~ 

a s ~  

F~ -~ I, f~ [~ (2 -- 8)1~ 5-~ f + (P-- I) ~f,. 

In the analysis of problems of the "wake" type one uses the conditions of symmetry for the parameters of 

the primary flow and the pulsations at ~ = O; the conditions indicated above are used at the outer limit as 

atr /  = 0  F - - - - F ~ = [ = f ~ , ~ 0 ,  / ~ 1 ,  (12) 

as~ Qo 
F,  --~ I. f ,  [~ ( 2 - -  13)) ~ f + (~ - -  I) T][,. 

Equations (8) and (9) a re  solved jointly; when allowance is made for the effect of the perturbed mo- 
t ion on the p r imary  motion the last t e r m  in Eq. (8) is retained;  otherwise this t e r m  is omitted and the 
ordinary Folkner --  Skan equation is used as the equation of the p r imary  motion: 

F,.1,1 + FF,m + [J (1 - -  F~) = O. 

4 .  R e s u l t s  o f  t h e  S o l u t i o n  

The calculations were car r ied  out for three charac te r i s t i c  types of flows in the boundary layer :  for 
a plate (~ = m = 0), for a separa t ion poir~ at the surface of the body ( F ~  = 0), and for a point of division 
of the s t r e a m  in the wake, which is a full analog of the point of separat ion at the surface of a body. 

The difference between the latter two types of flow will consist  entirely in the fact that the pulsations 
at the wall (when ~ = 0) equal zero  for near-wal l  flows, while for flows of the wake type pulsations always 
occur at the axis (when ~ = 0). The calculations were car r ied  out in the null approximation (without allow- 
ance for the effect of the perturbed motion on the p r imary  motion) and in the f i rs t  approximation (~4th 
allowance for this effect). Calculations on the determinat ion of the intensity of pulsations at a plate (fl = 0) 
in the presence  of a very  low degree of turbulence E 0 = 0.0002 of the outer s t r e a m  are  presented in Fig. 1 
as an example; such a degree of turbulence was observed in the well-known experiments  of Dryden [3]. It 
is c lear ly  seen how the energy of the pulsations within the boundary layer grows with an increase  in the 
local Reynolds number 4. The effect of the perturbed motion on the p r imary  motion is absent f rom the 
calculations presented in Fig.  1. As the calculations showed, for near-wal l  problems with small  values of 
E 0 the allowance for the perturbed motion in the equations of the p r imary  motion proves to have a compara -  
t ively weak effect on the behavior of the pulsation motion in the viscous near-wal l  layer .  The law of d i s -  
t r ibut ion of the pulsations at the point of division of the wake (F = F~ = F~77 = 0 when ~ = 0) in the null and 
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Fig.  3. Law of energy distr ibution of pulsation motion in the c ross  s ec -  
t ion corresponding to the separat ion point at the wall with different E 0 in 
the null and f i rs t  approximat ions:  1) E = 0.000438; 2) 0.000683; 3) 
0.000945; 4) 0.00125; 5) 0.00166. 

Fig. 4. Transi t ional  Reynolds numbers as a function of tu rbu lence  E 0 of 
outer s t r e a m  for t ra i l ing cr i t ica l  point of a wake (region 1) and at a plate 
(2). Points : Dryden ' s  experiment [3]. 

f i r s t  approximations for } = 105 and different E 0 is presented in Fig. 2. 

F r o m  a compar i son  of Figs.  2, a and b, it is seen that the allowance for the effect of the perturbed 
motion on the p r imary  motion somewhat increases  the maximum of the pulsations and shifts it toward the 
axis of the wake. The considerable amplitude of the oscillations within the layer when the degree of t u r -  
bulence E 0 of the outer s t r eam is very  low a t t rac ts  attention. 

The distr ibution law of the p r imary  pulsation component u~=~/Ue ac ros s  the viscous layer at the 
separa t ion point on the surface of the body, with the same value ~ = 105 as in the wake in the null approxi-  
mation, is shown in Fig. 3, 

As the calculations showed, the solution of the problem in the f i rs t  approximation does not introduce 
significant ref inements  into the solution in the null approximation.  The intensity maximum of the pulsa-  
t ions in the near-wal l  flow (at a plate and at the separat ion point) is located at a distance of about a quar ter  
of the thickness of the boundary layer f rom the wall; this maximum approaches the wall with an increase  
in }. 

5 .  P u l s a t i o n  I n t e n s i t y  f o r  D e v e l o p e d  T u r b u l e n t  M o t i o n  

For  an est imate  of the pulsation intensity of the developed turbulent motion we can use the c o r r e l a -  
t ion between the Reynolds s t r e s s e s  - -pu 'v '  and the total  turbulent pulsation intensity-(~f = u'2 + v'2 + w'---{ 

_ _  u,v-~, = ~ k l  q2. (13) 

Here the plus sign is taken if (0u/0y) > 0 and vice versa .  In this connection, Schubauer and Kleban [4] have 
observed a dis tr ibut ion of a s imi lar  nature,  not only near the channel wall but a lso in the outer region, 
having much in common with jet flows. In the outer region,  where a maximum in ~ exists ,  the propor t ion-  
ality constant k 1 reaches  a value of k 1 ~ 0.4 [4]; Townsend [5] indicates a s imi lar  value for turbulent jets 
and wakes. To determine the maximum energy of the turbulent pulsations one must indicate the maximum 
value of the Reynolds s t r e s s  Tmax = (--pu'v ' )max.  Within the f ramework of the present  analysis we can 
use the approximate relat ions of semiempi r ica l  turbulence theory :  ~t = Pet(0u/DY); here one can examine 
var ious  models of turbulent viscosi ty both for the near-wal l  problems and for problems of the "wake" type. 
The Prandtl  equation et = ~.5 (Ue -- Um) is the most widely used in the theory of jets and wakes, and the 
equation ~t = (1/2q2)X(Ue - U m ) ,  where ~r is a s imi lar i ty  constant determined by experiment,  is also widely 
used. The profile of the average longitudinal velocity component can also be assigned by various means.  
Let us consider  the following means of ass ignment  [6] of the velocity profile (~ = y /5 ,  5 is the width of the 
layer  or jet, and Au = u --  Ue/Ue -- urn): 

_3 
A u  = (1-- ,l -~ )', (I) 

(the profile of H. Schlichting) 

Au ---- 1 - -  6q ~ -}- 8~l s - -  3q 4, (II) 

-Au - -  1 - -  3'rl a + 2rl a (H I )  
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(II and III a r e  prof i les  of A. S. Ginevskii) ,  

Au=  - -  ( l+erf~l) .  
2 

The la t ter  exp re s s ion  for the veloci ty  prof i le  co r re sponds  to  a turbulent  v i scos i ty  model of the type e t = 
(1/2q2)X(Ue -- u m) while the coordinate  V is the s imi l a r i t y  coordinate  ~ = - (y /x ) .  Using the condition 
max (kl~ 2) = max [et (Su/Sy)], we obtain the following r e spec t i ve  values  of the to ta l  intensi ty max imu m for 
the indicated veloci ty  fami l ies  I - IV:  with et = ~5(Ue --  u m) 

d i 1.425 ki , 

u~--u~ max---- • (14) 

t ki ' 

with e t = (1/2~2)X(Ue --  u m) 

t /e  - -  Urn m a x  ~ ~ 2 H  ' 

where  it is a s sumed  that  ~ = 0.011, kl = 0.4, and a = 12. For  flow at  a plate the to ta l  ir~ensity max imu m 
in a c r o s s  sec t ion  of the viscous layer  can be de te rmined  by Lau fe r ' s  approx imate  equation [7] 

( ] / ~ -  'l ---- 2.2 ~ /~ .  (16) 
U e ] m a x  

6.  C r i t i c a l  R e y n o l d s  N u m b e r  

Equations (14)-(16) a r e  used to e s t ima te  the t r ans i t i on  f r o m  laminar  to turbulent  motion.  In a c c o r -  
dance with the hypothesis  advanced by L. N. Shchukin (see the above footnote),  the t r ans i t ion  occurs  in 
that  sec t ion  of the boundary layer  where  the ene rgy  m a x i m u m  of the neutra l  osci l la t ions in the laminar  
l ayer  coincides with the ene rgy  m a x i m u m  of the pulsations in the developed turbulent  flow (in this approach  
the length of the t r ans i t i on  reg ion  is t aken  as equal to  zero) .  In order  to de t e rmine  the t ime  of the t r a n s i -  
t ion of the energy maximum we compared the energies of the neutral oscillation pulsations having a fixed 
E 0 and different ~ with the maximum total ir~ensity calculated for flows of the wake type and for a separation 
point at the surface of the body based on Eqs. (14)-(15) with u m = 0, and for flow along a plate from Eq. 
(16), where the coefficient of friction ef was estimated from the well-known equation of L. V. Kozlov cf = 
0.085Re~0.28+ 0.01 log Rex, the Prandtl equationef = 0.074Rex ~ the Schlichting-- Prandtl equation ef = 0.455 
(log Rex) -~'~8, andthe Folkner power-law equation ef = 0.0262Rext/7. 

The results of the calculations are presented in Fig. 4, in which we show the generalized dependence 
of the transition Reynolds number }tr on the degree of turbulence E 0 of the outer stream for the types of 
flows investigated. Good agreement with the experimental studies of Dryden is found for the plate (Recr -~ 
2.8. i06 with E 0 = 0.0002) [3]; the critical Reynolds number 2.34-i06 -- (UeX/V)c r -< 2.82. i06 (the right 
value corresponds to the equation of L. V. Kozlov and the left, to the Prandtl equation) is obtained by cal- 
culation for the means of determination of cf enumerated. The critical Reynolds number decreases sharply 
with an increase in the degree of turbulence E 0 in the outer stream. Dryden [3] pointed out this fact, noting 
that when E 0 >- 0.0003 the transition to the turbulent form of flow is caused by random disturbances without 
a preliminary rise in the oscillation amplitude, as is assumed in the present analysis. 

NOTATION 

x, y, t ,  s p a c e - - t i m e  coordinate  s:~stem; u, v, longitudinal and t r a n s v e r s e  veloci ty  components ;  
~,(x, y), r (x, y, t),  s t r e a m  functions of instantaneous component  of p r i m a r y  flow and of per turbed  motion, 
r e spec t ive ly ;  } = (UeX/v), cu r r en t  Reynolds number ;  f l  = 2 m / ( m  + 1 ) , p a r a m e t e r  o f  p r e s s u r e  gradient  Ue = 
cx m in Folkner  - -  Scan flow; ~ = y /x [~ / (2  --/3)] ~ s imi l a r i t y  coordinate ;  F(~), reduced d imens ion less  
s t r e a m  function; F~ = u /u  e, d imens ion less  longitudinal veloci ty;  ~'  (t), a r a n d o m  function of t ime ;  f(.~), 
d imens ion less  pulsat ion function; E 0 = ug--~/Ue, degree  of homogeneous turbulence  in outer  s t r e a m ;  A, 
Laplace opera to r ;  ~, k inemat ic  v i scos i ty ;  p, mass  densi ty  of medium;  r u -W, ~ t ime  averages  of 
squa re s  of pulsat ion components  @', u ' ,  and v ' ;  ~2 = ~-~+~'r2+w--~ ~ tota l  pulsat ion intensi ty;  r = - -~h -~ ,  
Reynolds s t r e s s ;  e t, coeff ic ient  of turbulent  v iscos i ty ;  5, th ickness  of boundary  layer ;  k I = 0.4, p r o p e r -  
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t ionali ty constant (an exper imenta l  value) in the co r re l a t ion  function u 'v '  = ~- klq2; ~ = 0.011, turbulence 
constant in Prandtl  equation for let flows; a = 12, s imi la r i ty  coordinate for turbulent  mixing. Indices:  ~, x, 
y,  t ,  der ivat ive  of the respec t ive  funct ionwith  respec t  to the coordinates  7}, x, y, and t;  e, outer boundary of 
the viscous layer ;  i = 0, 1, 2, 3, and 4, numbers  of the coefficients a i. 
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A P P R O X I M A T E  M E T H O D  OF C A L C U L A T I N G  T H E  

T E M P E R A T U R E  P R O F I L E  IN A S E M I T R A N S P A R E N T  

M E L T I N G  M A T E R I A L  

A .  S. S e n c h e n k o v  UDC536.12:536.35 

The in tegral  two-pa rame t r i c  method is used to  calculate the t empera tu re  profi le  in a s emi t r ans -  
parent  melting mater ia l ;  the method takes the specif ics of the problem unde r  study into account.  

The velocity for the removal  of the mass of vi t reous heatproof  mater ia l s  under heating action is de t e r -  
mined to a significant degree  by the t empe ra tu r e  profi le  near  the sur face ,  a fact which is re la ted to the strong 
dependence of the viscosi ty  of these  mater ia l s  on the t em p e ra tu r e .  Since most vi t reous heatproof mater ia ls  
a re  semi t ransparen t ,  the t empera tu re  profi le  also de te rmines  the amount of heat emitted by the mater ia l .  

At the same t ime,  as the resu l t s  of the numer ica l  calculations show [1], the exponential approximations 
of a t r ansparen t  fi lm and an opaque f i lm and the approximation of radiant  the rma l  conductivity do not guarantee 
the sa t i s fac tory  accuracy  in calculating the t empera tu re  dis t r ibut ion near  the surface  if the optic thickness of 
the liquid fi lm has the order  of unity (typical for many heatproof mater ia l s ) .  

Below we propose an approximate method for calculating the t empera tu re  dis tr ibut ion in a s emi t r ans -  
parent  mater ia l  that is applicable for  the case given. 

The f rac tu re  of heatproof mater ia l s  under heating is descr ibed  by a sys tem of equations of continuity, 
motion, energy,  and emiss ion  t r an s f e r  With corresponding boundary conditions [2]. We limit ourselves  in the 
presen t  study to  the energy equations.  We can wri te  the equation for a s ta t ionary reg ime of f rac tu re  in dimen-  
s ionless  form [1,2] 

d ( d ~ y _ ~ O _ f , = O  ' (1) 

o (0)  = 1, o ( o ~ )  = o T 

Trans la ted  f rom Inzhenerno-Fiz icheski i  Zhurnal,  Vol. 30, No. 3, pp. 528-531, March, 1976. Original 
a r t ic le  submitted February  24, 1975. 
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